Methods and Metrics for Quantifying Ecologic Benefits of River Restorations

Katie Jagt, PE Consulting Engineer to American Rivers

> Mary Matella PhD Candidate, UC Berkeley

> > October 10 2012

Goals for the metric

- Useful both as a screening and design tool.
- Adapted to measure habitat/benefit for a variety of species/objectives.
- Easily applied by any agency or consultant that uses standard tools and available data.
- Transparent and replicable i.e. not subject to distortion by hidden assumptions, qualitative indices, or weighting factors.

Ecosystem Variables

Physical

- Area
- depth
- velocity
- cover
- vegetation
- connectivity

<u>Hydrologic</u>

- Duration
- Frequency
- Timing

Borrowing Ideas ?

Intensity-Duration-Frequency Curves in Hydrology

Estimated Annual Damage in Flood Risk Analysis

Estimated Annual Habitat

Method Flow

HEC-EFM

HEC-EFM

HEC-EFM

Durations	RANK	PEAK_FLOW_ ALUE_Q(cfs)	V LOGQ_cfs	(log Q – avg(logQ))^2	(log Q – avg(logQ))^3	Return Period (n+1)/m	Exceedence Probability (1/Tr)
1-Dav	1	52,600	4.721	0.4959	0.3492	54.00	0.019
I Duy	2	50,900	4.707	0.4760	0.3284	27.00	0.037
3-Day	3	45,100	4.654	0.4063	0.2589	18.00	0.056
	4	34,400	4.537	0.2702	0.1404	13.50	0.074
- D	5	33,598	4.526	0.2596	0.1323	10.80	0.093
7-Day	6	31,201	4.494	0.2279	0.1088	9.00	0.111
	7	29,800	4.474	0.2092	0.0957	7.71	0.130
14-Day	8	28,400					
	9	27,500		100000			a Doorgon III
21-Day	10	26,599		80000		Dis	stribution
,	11	26,599		70000		Fr Pr	equency ediction
28-Dav			Flow (cfs)	60000			
60-Day				30000			
00-Day				20000			
				10000			
				1	10 100)	
American Rivers	5			Recurrance	ce Interval (yr)		

HEC-RAS and other hydraulic models

C

HEC-RAS and other hydraulic models

ADF Curve Development

ADF Curve Development

Probability (given as Recurrence Interval)

Develop ADF Curves

Q vs Area Curves

Develop ADF Curves

American Rivers Rivers Connect Us **Probability (given as Recurrence Interval)**

Develop EAH

Corridor Expansion Test Reach

Remove levees between Vernalis and Hwy 5, Expand Paradise Cut, Convert Fabian Tract to Floodway

Monthly Average Flow

Reservoir Re-operation Scenarios

Scenario	Description
'Current Rules'	• No changes to operations
'Reservoir Re-Operation'	 Modify reservoir rules curves (New Melones, Don Pedro, McLure): Additional fall drawdown: Combined 221 TAF in Nov and 151 TAF in Dec for three reservoirs Reduced flood reservation : Combined -121 TAF (-11%) in Feb, - 323 TAF (-32%) in Mar, -569 TAF (-82%) in Apr, -123 TAF (-98%) in May for three reservoirs Groundwater banking: Added 333 TAF storage capacity each for Stanislaus, Tuolumne, and Merced River riparian water users.
'Reservoir Re-Operation + Floodplain inundation'	 Modified rule curves as above Groundwater banking operations as above 2-weeks floodplain inundation between Feb-May in 80% of years

Ecosystem Relationships

Ecological Relevance	Season	Duration	Frequency
Splittail spawning and	Feb —	At least 21	At least 4 yr
rearing	May	days	return period
Chinook salmon rearing	Dec –	At least 14	At least 2 yr
	May	days	return period
Phytoplankton	Dec –	At least 2	1.3 yr return
production	May	days	period
Zooplankton production	Dec –	At least 14	1.3 yr return
	May	days	period
Benthic macroinvertebrate production	Dec – Sep	At least 1 day	2 yr return period

ADF Curves: Results

ADF Curves: Results Post-Dam Hydrology, Corridor Expansion 25,000 Even more benefit with reservoir re-20,000 operations 15,000 10,000 -1 Day -3 Days 7 Days -14 Davs 21 Days 28 Days 60 Days 5,000 **Recommended Flows Reservoir Re-op, Corridor Expansion** 25.000

0.9

0.8

0.7

0.6

0.5

Probability (1/year)

0.4

0.3

0.2

EAH Development

Rivers Connect Us

EAH Results

Goals for the metrics

- Useful both as a screening and design tool.
- Adapted to measure habitat/benefit for a variety of species/objectives.
- Easily applied by any agency or consultant that uses standard tools and available data.
- Transparent and replicable i.e. not subject to distortion by hidden assumptions, qualitative indices, or weighting factors.

Benefits as Risk

Risk = Probability x Consequence

Climate Change

Conclusions

1. Study in method and development of new and transparent metrics

2. In this case, restoration must also include changes to the hydrology

Questions?

Especially John Cain, Mark Tompkins, Rich Walkling, and Eric Ginney

Flood Risk Results

Annualized Risk of Failure between Mossdale and Stockton, right bank.

75% reduction in annualized probability of levee failure.

